Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
BMC Plant Biol ; 24(1): 176, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448825

RESUMO

BACKGROUND: The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates. While soil microbiomes have been extensively studied in traditional agriculture to improve plant performance, health, and sustainability, information about the microbiomes of soilless substrates is still limited. Thus, we conducted an experiment to explore the microbiome of a peat-based substrate used in container production of Impatiens walleriana, a popular greenhouse ornamental plant. We investigated the effects of plant phenological stage and fertilization level on the substrate microbiome. RESULTS: Impatiens plants grown under low fertilization rates were smaller and produced more flowers than plants grown under optimum and high fertilization. The top five bacterial phyla present in the substrate were Proteobacteria, Actinobacteria, Bacteriodota, Verrucomicrobiota, and Planctomycetota. We found a total of 2,535 amplicon sequence variants (ASV) grouped into 299 genera. The substrate core microbiome was represented by only 1.8% (48) of the identified ASV. The microbiome community composition was influenced by plant phenological stage and fertilizer levels. Phenological stage exhibited a stronger influence on microbiome composition than fertilizer levels. Differential abundance analysis using DESeq2 identified more ASVs significantly affected (enriched or depleted) in the high fertilizer levels at flowering. As observed for community composition, the effect of plant phenological stage on microbial community function was stronger than fertilizer level. Phenological stage and fertilizer treatments did not affect alpha-diversity in the substrate. CONCLUSIONS: In container-grown ornamental plants, the substrate serves as the main microbial reservoir for the plant, and the plant and agricultural inputs (fertilization) modulate the microbial community structure and function of the substrate. The differences observed in substrate microbiome composition across plant phenological stage were explained by pH, total organic carbon (TOC) and fluoride, and across fertilizer levels by pH and phosphate (PO4). Our project provides an initial diversity profile of the bacteria occurring in soilless substrates, an underexplored source of microbial diversity.


Assuntos
Impatiens , Microbiota , Fertilizantes , Nutrientes , Solo
2.
Fitoterapia ; 172: 105738, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939736

RESUMO

Phytochemical investigation on the aerial parts of Corydalis impatiens (pall.) Fisch (Papaveraceae) resulted in the identification of four previous undescribed benzylisoquinoline alkaloids, impatienines A-D (1-4), together with 14 known analogues (5-18). The structures of these compounds were elucidated by extensive spectroscopic analysis (IR, HR-ESIMS, 1D- and 2D-NMR) as well as ECD calculations. All the compounds obtained were investigated for their inhibitory effect on the growth of A549, H1299 and HepG2 cancer cells. Compounds 7 and 15 exhibited pronounced inhibition against the A549 cancer cells with IC50 values of 6.81 µM and 3.17 µM, while the positive control cisplatin was 1.83 µM. Compounds 1-3 showed moderate inhibitory on the H1299 cancer cells. Compounds 4, 10-12, and 16 showed signiffcant activity against HepG2 cancer cells with IC50 values range of 4.41-8.75 µM.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Impatiens , Corydalis/química , Estrutura Molecular , Alcaloides/química , Espectroscopia de Ressonância Magnética , Componentes Aéreos da Planta/química
4.
Protoplasma ; 261(1): 111-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37542569

RESUMO

The aim of this study was to investigate in detail the pollen wall ontogeny in Impatiens glandulifera, with emphasis on the substructure and the underlying mechanisms of development. Sporopollenin-containing pollen wall, the exine, consists of two parts, ectexine and endexine. By determining the sequence of developing substructures with TEM, we have in mind to understand in which way the exine substructure is connected with function. We have shown earlier that physical processes of self-assembly and phase separation are universally involved in ectexine development; currently, we try to clear up whether these processes participate in endexine development. The data received were compared with those on other species. The ectexine ontogeny of I. glandulifera followed the main stages observed in many other species, including the late tetrad stage named "Golden gates". It turned out that the same physico-chemical processes act in endexine development, especially expressed in aperture sites. Another peculiar phenomenon observed in exine development was the recurrency of micellar sequence at near-aperture and aperture sites where the periplasmic space is widened. It should be noted that, in the whole, the developmental substructures observed during the tetrad and early post-tetrad period are similar in species with columellate exines. Evidently, these basic physical processes proceed, reiterating again and again in different species, resulting in an enormous variety of exine structures on the base of a relatively modest number of genes. Granular and alveolar exines emerge on the base of the same basic processes but are arrested at spherical and cylindrical micelle mesophases correspondingly.


Assuntos
Impatiens , Pólen
6.
BMC Plant Biol ; 23(1): 600, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030965

RESUMO

BACKGROUND: Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. RESULTS: A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. CONCLUSIONS: We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.


Assuntos
Balsaminaceae , Impatiens , Filogenia , Evolução Biológica , China , Filogeografia
7.
PeerJ ; 11: e16328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901463

RESUMO

The plant family Balsaminaceae comprises only two genera, and they are a study in contrasts. While Impatiens is an impressively prolific genus, with over 1,000 species and more being discovered each year, its sister genus, Hydrocera, has one solitary species, H. triflora. The two genera also differ in geographic distribution and habitat type (Impatiens species are widely distributed in much of the Old World and N. America, while H. triflora is confined to wetlands specific to S. India, Sri Lanka, and SE Asia). Other contrasting features include plant habit, habitat, floral architecture, mode of seed dispersal, and a host of other traits. The family Balsaminaceae is therefore an excellent model for studying speciation and character evolution as well as understanding the proximal and evolutionary forces that have driven the two genera to adopt such contrasting evolutionary paths. Various species of the Impatiens genus are also commercially important in the ornamental flower industry and as sources of phytochemicals that are of medicinal and other commercial value. As a preliminary step towards studying the genomic basis of the contrasting features of the two genera, we have sequenced and assembled, de novo, the genome of an iconic Impatiens species from N. America, namely I. capensis, and report our findings here.


Assuntos
Balsaminaceae , Impatiens , Nanoporos , Balsaminaceae/genética , Ecossistema , Sri Lanka
8.
Sci Rep ; 13(1): 14998, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696977

RESUMO

Recently, an interest has surged in incorporating extracts of medicinal plants as active ingredients in cosmetic formulations, highlighting the need to analyze medicinal plants of cosmetic interest for phytochemicals and bioactivities. The tuber of the Ethiopian medicinal plant Impatiens tinctoria A. Rich (Ensosila) is used to make traditional cosmetics. The aim of the study was to investigate the antioxidant and mineral content of the Impatiens tinctoria tuber. Water, ethanol, and methanol were used during the extraction process. High phenolic content was found in methanol extract (107.8 ± 0.025 µg/ml GAE) followed by water extract (92.4 ± 0.02 µg/ml GAE). High flavonoid content was also obtained in methanol extract (136.7 ± 0.04 µg/ml QE). Strong 2,2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity was recorded for methanol extract with IC50 value of 44.4 µg/ml, compared with ethanol extract (97.54 µg/ml) and water extracts (98.24 µg/ml). The lower IC50 value of methanolic extract demonstrated strong antioxidant activity. The three elements that were most prevalent in Impatiens tinctoria tuber out of the eight elements examined were K (170 ± 0.05 mg/100 g sample), Ca (87 ± 0.08 mg/100 g sample), and Mg (16 ± 0.01 mg/100 g sample). The phenolics, flavonoids, and minerals found in Impatiens tinctoria A. Rich (Ensosila) tuber may protect against oxidative stress-related skin damage and thus deserving attention for future applications in cosmetics formulations.


Assuntos
Impatiens , Plantas Medicinais , Antioxidantes/farmacologia , Metanol , Minerais , Etanol , Flavonoides , Fenóis , Água
9.
Plant Signal Behav ; 18(1): 2219936, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37288992

RESUMO

In this study, the effects of foliar applied methyl jasmonate (MeJA) on drought-stressed Impatiens walleriana growth and leaf physiology parameters: stomatal conductance, chlorophyll, flavonoid, anthocyanin, and nitrogen balance index (NBI), were evaluated. These parameters could serve as indicators of drought tolerance of I. walleriana, a popular horticultural plant worldwide that is very sensitive to drought. The experiment included four treatments: control, drought-stressed plants sprayed with distilled water, drought-stressed plants sprayed with 5 µM MeJA, and drought-stressed plants sprayed with 50 µM MeJA. Foliar spraying with MeJA was performed twice: seven days before and on the day of drought induction. The stressed plant groups were non-irrigated to achieve soil water contents (SWC) of 15 and 5%, while control plants were well-watered throughout the experiment (35-37% SWC). The results of this study showed that drought significantly reduced I. walleriana fresh and dry shoot weight, as well as total leaf area, but did not impact on dry matter content. The foliar application of MeJA improved growth parameters of I. walleriana, depending on the elicitor concentration and drought intensity. Stomatal conductance was slightly reduced at 5% SWC, and foliar applied MeJA at both concentrations. The flavonoid index was slightly reduced at 15 and 5% SWC when 50 µM MeJA was foliar applied, while there were no observed changes in the anthocyanin index in any treatments. The foliar application of 50 µM MeJA increased the chlorophyll index and NBI of I. walleriana at 5% SWC, indicating a contribution of the elicitor to plant drought tolerance at the physiological level.


Assuntos
Impatiens , Secas , Antocianinas , Folhas de Planta/fisiologia , Clorofila , Água
10.
Genes (Basel) ; 14(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239432

RESUMO

Drought stress affects plant growth and development through several mechanisms, including the induction of oxidative stress. To cope with drought, plants have drought tolerance mechanisms at the physiological, biochemical, and molecular levels. In this study, the effects of foliar application of distilled water and methyl jasmonate (MeJA) (5 and 50 µM) on the physiological, biochemical, and molecular responses of Impatiens walleriana during two drought regimes (15 and 5% soil water content, SWC) were investigated. The results showed that plant response depended on the concentration of the elicitor and the stress intensity. The highest chlorophyll and carotenoid contents were observed at 5% SWC in plants pre-treated with 50 µM MeJA, while the MeJA did not have a significant effect on the chlorophyll a/b ratio in drought-stressed plants. Drought-induced formation of hydrogen peroxide and malondialdehyde in plants sprayed with distilled water was significantly reduced in plant leaves pretreated with MeJA. The lower total polyphenol content and antioxidant activity of secondary metabolites in MeJA-pretreated plants were observed. The foliar application of MeJA affected the proline content and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase) in plants that suffered from drought. The expression of abscisic acid (ABA) metabolic genes (IwNCED4, IwAAO2, and IwABA8ox3) was the most affected in plants sprayed with 50 µM MeJA, while of the four analyzed aquaporin genes (IwPIP1;4, IwPIP2;2, IwPIP2;7, and IwTIP4;1), the expression of IwPIP1;4 and IwPIP2;7 was strongly induced in drought-stressed plants pre-treated with 50 µM MeJA. The study's findings demonstrated the significance of MeJA in regulating the gene expression of the ABA metabolic pathway and aquaporins, as well as the considerable alterations in oxidative stress responses of drought-stressed I. walleriana foliar sprayed with MeJA. The results improved our understanding of this horticulture plant's stress physiology and the field of plant hormones' interaction network in general.


Assuntos
Impatiens , Impatiens/metabolismo , Secas , Clorofila A , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Plantas/metabolismo , Água/metabolismo
11.
Evolution ; 77(6): 1315-1329, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36932967

RESUMO

Inbreeding exposes deleterious recessive alleles in homozygotes, lowering fitness and generating inbreeding depression (ID). Both purging (via selection) and fixation (via drift) should reduce segregating deleterious mutations and ID in more inbred populations. These theoretical predictions are not well-tested in wild populations, which is concerning given purging/fixation have opposite fitness outcomes. We examined how individual- and population-level inbreeding and genomic heterozygosity affected maternal and progeny fitness within and among 12 wild populations of Impatiens capensis. We quantified maternal fitness in home sites, maternal multilocus heterozygosity (using 12,560 single-nucleotide polymorphisms), and lifetime fitness of selfed and predominantly outcrossed progeny in a common garden. These populations spanned a broad range of individual-level (fi = -0.17-0.98) and population-level inbreeding (FIS = 0.25-0.87). More inbred populations contained fewer polymorphic loci, less fecund mothers, and smaller progeny, suggesting higher fixed loads. However, despite appreciable ID (mean: 8.8 lethal equivalents per gamete), ID did not systematically decline in more inbred population. More heterozygous mothers were more fecund and produced fitter progeny in outcrossed populations, but this pattern unexpectedly reversed in highly inbred populations. These observations suggest that persistent overdominance or some other force acts to forestall purging and fixation in these populations.


Assuntos
Impatiens , Endogamia
12.
J Plant Res ; 136(3): 323-331, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36809400

RESUMO

In angiosperms, intraspecific variation of flowering phenology may affect reproductive isolation and, consequently, speciation. This study focused on Impatiens noli-tangere (Balsaminaceae), which is distributed over broad latitudinal and altitudinal ranges in Japan. We aimed to reveal the phenotypic mixture of two ecotypes of I. noli-tangere with different flowering phenology and morphological traits in a narrow contact zone. Previous studies have shown that I. noli-tangere has early- and late-flowering types. The early-flowering type makes buds in June and is distributed at high-elevation sites. The late-flowering type makes buds in July and is distributed at low-elevation sites. In this study, we analyzed the flowering phenology of individuals at an intermediate elevation site where the early- and late-flowering types grow in sympatry (contact zone). We found no individuals showing intermediate flowering phenology at the contact zone, and early- and late-flowering types were clearly distinguishable. We also found that the differences in many other phenotypic traits between the early- and late-flowering types were maintained, including the number of flowers produced (total number of chasmogamous and cleistogamous flowers), leaf morphology (aspect ratio, number of serrations), seed traits (aspect ratio), and flower bud formation positions on the plant. This study showed that these two flowering ecotypes maintain many different traits in sympatry.


Assuntos
Balsaminaceae , Impatiens , Ecótipo , Simpatria , Reprodução , Flores
13.
Planta ; 257(2): 45, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695892

RESUMO

MAIN CONCLUSION: This study reported seven new plastomes from Impatiens and observed three highly variable regions for phylogeny and DNA barcoding, which resolved the relationships among sections of subgenus Impatiens. Impatiens L. (Balsaminaceae, Ericales) is one of the largest and most diverse genera of angiosperms, widely known for its taxonomic difficulty. In this study, we reevaluated the infrageneric relationships within the genus Impatiens, using complete plastome sequence data. Seven complete plastomes of Impatiens (representing 6 species) were newly sequenced and characterized along with 20 previously published plastomes of other Impatiens species, plus 2 plastomes of outgroups (Hydrocera triflora, Balsaminaceae; Marcgravia coriacea, Marcgraviaceae). The total size of these 29 plastomes ranged from 151,538 bp to 152,917 bp, except 2 samples of Impatiens morsei, which exhibited a shorter length and lost some genes encoding NADH dehydrogenase subunits. Moreover, the number of simple sequence repeats (SSRs) ranged from 51 to 113, and the number of long repeats from 17 to 26. In addition, three highly variable regions were identified (trnG-GCC (The previous one), ndhF-rpl32-trnL-UGA-ccsA, and ycf1). Our phylogenomic analysis based on 80 plastome-derived protein-coding genes strongly supported the monophyly of Impatiens and its two subgenera (Clavicarpa and Impatiens), and fully resolved relationships among the six (out of seven) sampled sections of subgenus Impatiens. Overall, the plastome DNA markers and phylogenetic results reported in this study will facilitate future identification, taxonomic and DNA barcoding studies in Impatiens as well as evolutionary studies in Balsaminaceae.


Assuntos
Balsaminaceae , Impatiens , Balsaminaceae/genética , Impatiens/genética , Filogenia , Sequência de Bases , Evolução Molecular
14.
Sci Rep ; 13(1): 1207, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681694

RESUMO

Invasive species are a major threat for native ecosystems and organisms living within. They are reducing the biodiversity in invaded ecosystems, by outcompeting native species with e. g. novel substances. Invasive terrestrial plants can release allelochemicals, thereby reducing biodiversity due to the suppression of growth of native plants in invaded habitats. Aside from negative effects on plants, allelochemicals can affect other organisms such as mycorrhiza fungi and invertebrates in terrestrial ecosystems. When invasive plants grow in riparian zones, it is very likely that terrestrial borne allelochemicals can leach into the aquatic ecosystem. There, the often highly reactive compounds may not only elicit toxic effects to aquatic organisms, but they may also interfere with biotic interactions. Here we show that the allelochemical 2-methoxy-1,4-naphthoquinone (2-MNQ), produced by the ubiquitously occurring invasive terrestrial plant Impatiens glandulifera, interferes with the ability of Daphnia to defend itself against predators with morphological defences. Daphnia magna and Daphnia longicephala responded with morphological defences induced by chemical cues released by their corresponding predators, Triops cancriformis or Notonecta sp. However, predator cues in combination with 2-MNQ led to a reduction in the morphological defensive traits, body- and tail-spine length, in D. magna. In D. longicephala all tested inducible defensive traits were not significantly affected by 2-MNQ but indicate similar patterns, highlighting the importance to study different species to assess the risks for aquatic ecosystems. Since it is essential for Daphnia to adapt defences to the current predation risk, a maladaptation in defensive traits when simultaneously exposed to allelochemicals released by I. glandulifera, may therefore have knock-on effects on population dynamics across multiple trophic levels, as Daphnia is a key species in lentic ecosystems.


Assuntos
Impatiens , Micorrizas , Animais , Daphnia , Ecossistema , Feromônios/farmacologia , Feromônios/química
15.
Plant Dis ; 107(7): 2027-2038, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36444139

RESUMO

Impatiens downy mildew (IDM) caused by Plasmopara destructor is currently the primary constraint on the production and use of impatiens (Impatiens walleriana) as bedding plants worldwide. Downy mildew has been documented since the 1880s from wild-grown Impatiens spp. but epidemic outbreaks of the disease affecting the commercially grown, ornamental I. walleriana were only reported for the first time in 2003 in the United Kingdom and in 2004 in the United States. Here, we assess the genetic diversity, level of differentiation, and population structure from 623 samples associated with current and preepidemic IDM outbreaks, by genotyping the samples with simple sequence repeat markers. P. destructor population structure following the emergence of IDM in the United States is subdivided into four genetic lineages characterized by high genetic diversity, mixed reproduction mode, inbreeding, and an excess of heterozygosity. P. destructor genotypes are significantly differentiated from preepidemic IDM samples from hosts other than I. walleriana but no geographical or temporal subdivision is evident. P. destructor samples from different Impatiens spp. show significant but very low levels of differentiation in the analysis of molecular variance test that did not hold in discriminant analysis of principal components analyses. The same was observed between samples of P. destructor and P. velutina recovered from I. walleriana. The finding of shared genotypes in samples from different countries and lack of differentiation among U.S. and Costa Rican samples indicate the occurrence of international movement of the pathogen. Our study provides the first high-resolution analysis of the diversity of P. destructor populations and the IDM epidemic that may be instrumental for disease management and breeding efforts.


Assuntos
Impatiens , Oomicetos , Peronospora , Estados Unidos/epidemiologia , Melhoramento Vegetal , Oomicetos/genética , Peronospora/genética , Genótipo
16.
J Ethnopharmacol ; 303: 115956, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436713

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Impatiens balsamina is an annual herb of the Balsaminaceae family, which is cultivated extensively in Asia as an ornamental plant. Notably, as a folk medicine, I. balsamina has been long prescribed for the treatment of rheumatism, isthmus, generalized pain, fractures, inflammation of the nails, scurvy, carbuncles, dysentery, bruises, foot diseases, etc. AIM OF THE STUDY: The paper overviews comprehensive information on ethnobotanical uses, phytochemistry, pharmacological activity, and toxicity of I. balsamina, aiming at laying a sturdy foundation for further development of I. balsamina. MATERIALS AND METHODS: Research information was acquired through electronic databases such as Web of Science, PubMed, SciFinder, ScienceDirect, Google Scholar, and CNKI with the keyword "Impatiens balsamina ". RESULTS: Briefly, more than 307 natural compounds have been separated and identified from various medicinal parts of I. balsamina, which are classified into diverse groups, like flavonoids, naphthoquinones, coumarins, terpenoids, sterols, phenols, fatty acids and their ester, naphthalene derivatives, nitrogen-containing compounds, polysaccharides, and other compounds. In particular, 2-methoxy-1,4-naphthoquinone, one of the naphthoquinones, is the predominant and most representative component. Moreover, I. balsamina furnishes numerous and complicated pharmacological activities, including antimicrobial, antiallergic, antipruritic, antitumor, antioxidant, anti-inflammatory, immunomodulatory, anti-hepatic fibrosis, insecticidal, and anthelmintic as well as enzyme-inhibiting activities, etc. Toxicological studies have shown that the hexane extract of the stems and leaves was less toxic, and the hydroalcoholic extract of stems was more toxic. CONCLUSIONS: The paper contributes to updating the ethnobotanical uses, phytochemistry, pharmacological activity, and toxicity of I. balsamina, which offer abundant information for future investigations and applications of I. balsamina.


Assuntos
Impatiens , Naftoquinonas , Etnobotânica , Medicina Tradicional , Dor/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade , Etnofarmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Fitoterapia
17.
BMC Plant Biol ; 22(1): 553, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456926

RESUMO

BACKGROUND: Spur, a structure capable of producing and storing nectar, not only plays a vital role in the pollination process but also promotes the rapid diversification of some plant lineages, which is considered a key innovation in plants. Spur is the focus of many studies, such as evolution and ecological hypothesis, but the current understanding of spur development is limited. High-throughput sequencing of Impatiens uliginosa was carried out to study the molecular mechanism of its spur development, which is believed to provide some insights into the spur development of Impatiens. RESULTS: Transcriptomic sequencing and analysis were performed on spurs and limbs of I. uliginosa at three developmental stages. A total of 47.83 Gb of clean data were obtained, and 49,716 unigene genes were assembled. After comparison with NR, Swiss-Prot, Pfam, COG, GO and KEGG databases, a total of 27,686 genes were annotated successfully. Through comparative analysis, 19,356 differentially expressed genes were found and enriched into 208 GO terms and 146 KEGG pathways, among which plant hormone signal transduction was the most significantly enriched pathway. One thousand thirty-two transcription factors were identified, which belonged to 33 TF families such as MYB, bHLH and TCP. Twenty candidate genes that may be involved in spur development were screened and verified by qPCR, such as SBP, IAA and ABP. CONCLUSIONS: Transcriptome data of different developmental stages of spurs were obtained, and a series of candidate genes related to spur development were identified. The importance of genes related to cell cycle, cell division, cell elongation and hormones in spur development was clarified. This study provided valuable information and resources for understanding the molecular mechanism of spur development in Impatiens.


Assuntos
Impatiens , Transcriptoma , Sequenciamento do Exoma , Ciclo Celular , Bases de Dados de Proteínas
18.
PLoS One ; 17(10): e0274699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260554

RESUMO

Impatiens nimspurjae (Impatiens, Balsaminaceae), a new species from Nepal is described based on molecular data and morphological characters. Notes on the diagnostic characters used to distinguish it from allied taxa are provided. I. nimspurjae is closely related with taxon belonging to sect. Racemosae (I. harae, I. radiata, I. wallichii, I. urticifolia) in having many-flowered racemose inflorescences, lateral sepals 2 (very rarely 4 with inner 2 reduced), capsule linear, seed ovoid, but differs by its sessile leaves, upper lobe of lower united petal not truncated, spur flattened at base. With the discovery of this new species and five species new records to Nepal, a checklist of Balsaminaceae having 57 species (8 endemic) in Nepal is updated. An identification key to the species of Imaptiens in Nepal is also provided.


Assuntos
Balsaminaceae , Impatiens , Lista de Checagem , Nepal , Flores
19.
Sci Total Environ ; 850: 157959, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964758

RESUMO

AIMS: The present study is the first-ever attempt to generate information on the potential present and future distribution of Impatiens capensis (orange balsam) under various climate change scenarios. Moreover, the differences in bioclimatic preferences of native and non-native populations were evaluated. LOCATION: Global. TAXON: Angiosperms. METHODS: A database of I. capensis localities was compiled based on the public database - the Global Biodiversity Information Facility (GBIF), herbarium specimens, and a field survey in Poland. The initial dataset was verified, and each record was assigned to one of two groups - native (3664 records from North America) or non-native (750 records from Europe and the western part of North America). The analyses involved bioclimatic variables in 2.5 arc-minutes of interpolated climate surface downloaded from WorldClim v. 2.1. MaxEnt version 3.3.2 was used to conduct the ecological niche modeling based on presence-only observations of I. capensis. Forecasts of the future distribution of the climatic niches of the studied species in 2080-2100 were made based on climate projections developed by the CNRM/CERFACS modeling and Model for Interdisciplinary Research on Climate (MIROC-6). MAIN CONCLUSIONS: Distribution models created for "present time" showed slightly broader potential geographical ranges of both native and invasive populations of orange balsam. On the other hand, some areas (e.g. NW Poland, SW Finland), settled by the species, are far outside the modeled climate niche, which indicates a much greater adaptation potential of I. capensis. In addition, the models have shown that climate change will shift the native range of orange balsam to the north and the range of its European populations to the northwest. Moreover, while the coverage of niches suitable for I. capensis in America will extend due to climate change, the European populations will face 31-95 % habitat loss.


Assuntos
Mudança Climática , Impatiens , Bálsamos , Biodiversidade , Ecossistema
20.
Arch Virol ; 167(10): 2099-2102, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829823

RESUMO

Two double stranded RNAs (dsRNAs) that likely represent the genome of an alphapartitivirus, tentatively named "impatiens cryptic virus 1" (ICV1), were recovered from Impatiens balsamina L. RNA1 (2008 bp) codes for the RNA-dependent RNA polymerase (RdRp) of ICV1, which shares <83% amino acid sequence identity with the RdRps of other alphapartitiviruses. RNA2 (1906 bp) codes for the coat protein (CP) of ICV1, which shares <60% amino acid sequence identity with the CPs of other alphapartitiviruses. Phylogenetic analysis suggested that ICV1 is closely related to plant alphapartitiviruses, including vicia cryptic virus, beet cryptic virus 1, carrot cryptic virus, and white clover cryptic virus 1. Using primers specific for RNA1 or RNA2, ICV1 could be detected in I. balsamina from various parts of China.


Assuntos
Impatiens , Vírus de RNA , Genoma Viral , Impatiens/genética , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...